Extended Hermite subdivision schemes
نویسندگان
چکیده
Subdivision schemes are efficient tools for building curves and surfaces. For vector subdivision schemes, it is not so straightforward to prove more than the Hölder regularity of the limit function. On the other hand, Hermite subdivision schemes produce function vectors that consist of derivatives of a certain function, so that the notion of convergence automatically includes regularity of the limit. In this paper, we establish an equivalence between a spectral condition and operator factorizations, then we study how such schemes with smooth limit functions can be extended into ones with higher regularity. We conclude by pointing out this new approach applied to cardinal splines. keywords: Subdivision, Hermite, Convergence, Derivatives.
منابع مشابه
Hermite-interpolatory subdivision schemes
Stationary interpolatory subdivision schemes for Hermite data that consist of function values and first derivatives are examined. A general class of Hermite-interpolatory subdivision schemes is proposed, and some of its basic properties are stated. The goal is to characterise and construct certain classes of nonlinear (and linear) Hermite schemes. For linear Hermite subdivision, smoothness cond...
متن کاملNoninterpolatory Hermite subdivision schemes
Bivariate interpolatory Hermite subdivision schemes have recently been applied to build free-form subdivision surfaces. It is well known to geometric modelling practitioners that interpolatory schemes typically lead to “unfair” surfaces—surfaces with unwanted wiggles or undulations—and noninterpolatory (a.k.a. approximating in the CAGD community) schemes are much preferred in geometric modellin...
متن کاملDual Hermite subdivision schemes of de Rham-type
Though a Hermite subdivision scheme is non-stationary by nature, its non-stationarity can be of two types, making useful the distinction between Inherently Stationary (I.S.) and Inherently Non-Stationary (I.N.S.) Hermite subdivision schemes. This paper focuses on the class of inherently stationary, dual non-interpolatory Hermite subdivision schemes that can be obtained from known Hermite interp...
متن کاملAnalysis of Hermite interpolatory subdivision schemes
The theory of matrix subdivision schemes provides tools for the analysis of general uniform stationary matrix schemes The special case of Hermite interpolatory subdivision schemes deals with re nement algorithms for the function and the derivatives values with matrix masks depending upon the re nement level i e non stationary matrix masks Here we rst show that a Hermite interpolatory subdivisio...
متن کاملConvergent Vector and Hermite Subdivision Schemes
Hermite subdivision schemes have been studied by Merrien, Dyn and Levin and they appear to be very different from subdivision schemes analyzed before since the rules depend on the subdivision level. As suggested by Dyn and Levin, it is possible to transform the initial scheme into a uniform stationary vector subdivision scheme which can be handled more easily. With this transformation, the stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 317 شماره
صفحات -
تاریخ انتشار 2017